Probit Regression Model

Probit Regression with Contingency Table

Raw Data
Classification Rule: yi = 1 if P(yi = 1) > 0.5, otherwise yi = 0
Observation X (Regressor) Y (Binary Outcome) Predicted Probability yi

Contingency Table

yi = 0 yi = 1 Total
P(yi = 1) ≤ 0.5 or yi = 0 0 0 0
P(yi = 1) > 0.5 or yi = 1 0 0 0
Total 0 0 20
Model Performance
Accuracy: 0.00%

Estimated Probit Model

P(yi = 1|X) = Φ(0.000 + 0.000X)